Benchmarking Collision Avoidance Schemes for Dynamic Environments

نویسندگان

  • Luis Martinez-Gomez
  • Thierry Fraichard
چکیده

This paper evaluates and compare three stateof-the-art collision avoidance schemes designed to operate in dynamic environments. The first one is an extension of the popular Dynamic Window approach; it is henceforth called TVDW which stands for Time-Varying Dynamic Window. The second one called NLVO builds upon the concept of Non Linear Velocity Obstacle which is a generalization of the Velocity Obstacle concept. The last one is called ICS-AVOID, it draws upon the concept of Inevitable Collision States, ie states for which, no matter what the future trajectory of the robotic system is, a collision eventually occurs. The results obtained show that, when provided with the same amount of information about the future evolution of the environment, ICS-AVOID outperforms the other two schemes. The primary reason for this has to do with the extent to which each collision avoidance scheme reasons about the future. The second reason has to do with the ability of each collision avoidance scheme to find a safe control if one exists. ICS-AVOID is the only one which is complete in this respect thanks to the concept of Safe Control Kernel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection, Tracking and Avoidance of Multiple Dynamic Objects

Real-time motion planning in an unknown environment involves collision avoidance of static as well as moving agents. Strategies suitable for navigation in a stationary environment cannot be translated as strategies per se for dynamic environments. In a purely stationary environment all that the sensor can detect can only be a static object is assumed implicitly. In a mixed environment such an a...

متن کامل

A Reactive Collision Avoidance Approach for Mobile Robot in Dynamic Environments

This paper describes a novel reactive obstacle avoidance approach for mobile robot navigation in unknown and dynamic environment. This approach is developed based on the “situated-activity paradigm” and a “divide and conquer” strategy which steers the robot to move among unknown obstacles and towards a target without collision. The proposed approach entitled the Virtual Semi-Circles (VSC). The ...

متن کامل

Self - protection Method for Flying Robots to Avoid Collision

This paper provides a new approach to solve the motion planning problems of flying robots in uncertain 3D dynamic environments. The robots controlled by this method can adaptively choose the fast way to avoid collision without information about the shapes and trajectories of obstacles. Based on sphere coordinates the new method accomplishes collision avoidance of flying robots without any other...

متن کامل

Obstacle Avoidance in Local Navigation

A reactive navigation system for an autonomous non-holonomic mobile robot in dynamic environments is presented. A new object detection algorithm and a new reactive collision avoidance method are presented. The sensory perception is based in a laser range finder (LRF) system. Simulation results are presented to verify the effectiveness of the proposed local navigational system in unknown environ...

متن کامل

High-Speed Navigation Using the Global Dynamic Window Approach

Many applications in mobile robotics require the safe execution of a collision-free motion to a goal position. Planning approaches are well suited for achieving a goal position in known static environments, while real-time obstacle avoidance methods allow reactive motion behavior in dynamic and unknown environments. This paper proposes the global dynamic window approach as a generatlization of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009